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Legendre Pade approximants and their application in 
potential scattering 
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Mathematical Institute, Cornwallis Building, University of Kent, Canterbury, Kent CT2 
7NF. UK 

Received 9 June 1977, in final form 9 September 1977 

Abstract. A generalisation of Pad6 approximants to Legendre series expansions, pre- 
viously introduced for series when the coefficients are those of a series of Stieltjes, is 
extended to the case of more general series. Convergence and other useful properties are 
described. Comparison with other types of ‘Legendre Pad6 approximants’ is made using 
examples of scattering amplitudes in potential scattering. It is found that the approximants 
defined here give better results than the other types. Finally the scattering amplitude for 
the repulsive inverse square potential V = A / r 2  is evaluated using the above approximants 
and the approach to the classical limit as A +CO investigated. 

1. Introduction 

Pad6 approximants have proved very useful in the evaluation of functions which have 
power series expansions (for a general survey see Baker 1975), even if these series are 
only ‘formal’ in the sense that they converge only at the origin. In many situations, 
especially in scattering theory it is more usual to expand a function f(z) as a Legendre 
series 

In practice it will usually only be possible to evaluate the first few coefficients of this 
series. It would be useful if one could define approximants to f(z),  in terms of these 
coefficients in analogy to the Pad6 approximants to the corresponding power series 

In a previous work (Common 1969) one of the authors did this for the case when 
g(w) is a ‘series of Stieltjes’. Our aim here is to extend these results to more general 
series. The first step is to show in 0 2 how f ( z )  may be written as the integral of g(w) 
over a certain contour with a certain weight (depending on z as well as w), even when 
one or both of the series (1.1) and (1.2) is only ‘formal’. 

The approximants to f(z) are defined in § 3. It is shown that if f k + j / n ( z )  is the 
approximant corresponding to the [n + j / j ]  Pad6 approximant to g(w), being con- 
structed from the first 2n + j  + 1 coefficients of the series, then 

f(z )-ft;+j,n (2 1 = o(p2n + j +  1(z )>, (1.3) 
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a property completely analogous to the defining property of the ordinary Pad6 
approximant. We also prove that sequences of fb+j!n(z )  converge to f ( z )  if cor- 
responding sequences of Pad6 approximants converge to g ( w  ) in certain domains. 

Alternative definitions of 'Legendre Pad6 approximants' have been given by 
Holdeman (1969) and Fleischer (1973). Although convergence theorems have not 
been proved, numerical examples do indicate that they approximate the Legendre 
series quite well. 

In 0 4 we will compare the numerical results obtained by Fleischer (1973), with 
those obtained by using our approximants for the same example. It will be found that 
on the whole our approximants give better convergence. This is also true when we 
apply them to evaluating the scattering amplitude for the potential V ( r )  = A / r z  with 
A > O .  Here the comparison is made with the results of Corbella et a1 (1976). This 
example is particularly interesting since it has been shown that in the limit as the 
strength A of the potential tends to infinity, the above scattering amplitude tends to its 
classical limit (Kayser 1974). In fact our numerical results indicate that even for 
values of A = 3, the scattering amplitude is close to this limit. 

In 8 5 examples are discussed which show how the singularities of our approxi- 
mants try to simulate the singularities of the exact function in much the same way as 
the poles of the Pad6 approximant simulate the corresponding singularities of the 
power series. 

Finally in 8 6, we summarise the results of this work and discuss briefly further 
developments which will be described in a following paper (Common and Stacey 
1978). 

2. Legendre series related to power series 

It is well known (Kinoshita er a1 1964) that if the power series 
.30 

g ( w > =  c f i ( - W > '  (2.1) 
1=0 

converges in the open disc jwl<r  which we denote by C, and if r > l ,  then the 
corresponding Legendre series 

CO 

converges in the domain { z  Iz = 3(w + w-' ) ,  w E C, n F }  where F is the domain 1 w I > 1. 
The above domain of convergence is the elliptical disc E, with foci at *l and having 
semi-major axis :(r + r - ' ) .  The two functions g ( w )  and f ( z )  are holomorphic in their 
respective domains of convergence. The following result connects the two functions. 

Theorem 2.1. 

where K ( t ,  w ) =  (1 + 2 z w  + w ' ) - ~ ' ~  and the branch is chosen such that wK(z,  w ) +  1 
as Iwl+co. r here is a closed contour lying completely inside C, encircling in the 
positive direction the branch cut P+P- of K ( z ,  w )  joining the respective branch points 
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w = -2 f (2’ - 1)l” as indicated in figure 1. If g(w), as well as being holomorphic in 
C,, is continuous in C, U aC, where aC, is the boundary of C,, then r may be replaced 
in (2.3) by aC,. 

Figure 1. The domain C, and the integration path r in the w-plane. 

Proof. The power series expansion for g(w) is valid for all w E r. Hence 

Here we have evaluated the integrals over r by collapsing it around the cut of K and 
using the discontinuity of K across its cut. It may happen that the domain of 
holomorphy of g(w) is not a disc C, but a simply connected domain C, (which may or 
may not contain the disc C,), such that if w E C f l  F then w-l  E C and these two points 
can be joined by a contour lying completely within C. A typical example is illustrated 
in figure 2. 

We may define f(z) again by (2.3), where the cut of K ( z ,  w) is taken along a 
straight line joining w = -2 * (2’- 1)l” when this lies completely inside C as when 
these branch points P, are situated as indicated in figure 2. When the branch points 
are of the type Q, then the cut y of K ( z ,  w )  is to be curved so that it remains 
completely inside C, the domain of holomorphy of g ( w ) .  In either case from 
the assumed properties of C, and since [ - z  + ( z 2 -  l)”*]-’ = [ - z  - ( z ’ -  l)”*], it is 
possible to arrange the cut of K ( z ,  w) and also r to lie completely inside C. 

The following theorem may then be proved. 

Theorem 2 . 2 .  Let E be the domain {zlr = t(w + w-’), w E C f l F } .  Then if g(w) is 
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Figure 2. The domain C and integration paths r, rl  in the w-plane with the corresponding 
cuts of K ( z ,  w). 

holomorphic in C, 

f ( ~ ) = ~  K ( z ,  w)g(w)dw 27ri r 

is holomorphic for z E E where r is chosen as above and is 'formally' at least equal to 
the Legendre series C;"=,frPr(z). If g(w) is as well continuous in C U aC, then 

Proof. For all z E E, r may be continuously deformed so that K ( z ,  w) is a holomorphic 
function of z for all w E r. Hence f(z) defined by (2.5) is holomorphic for all z E E. 
For fixed z E E, K ( z ,  w)g(w) is holomorphic in the domain between r and aC and is 
continuous in this domain and on the boundary. Hence 

K ( z ,  w)g(w) dw = K ( z ,  w)g(w) dw I 
and (2.6) follows. 

If the power series (2.1) for g(w) is substituted in (2.6) and the order of summation 
and integration interchanged, then as previously we obtain the Legendre series 
expansion (2.2) for f ( z ) .  However, since the power series to g(w) will not necessarily 
converge for all w E dC, the corresponding Legendre series will not necessarily con- 
verge to f(z). In those cases when the series does not converge, we say that f (z )  is 
only 'formally' equal to it. 

In Common (1969), the case of a 'series of Stieltjes' was discussed, i.e. 

where 4 (u )  is a bounded non-decreasing function of U. Then g(w) is holomorphic in 
the complex plane cut from -r  to --CO and the series (2.7) converges in C,. Using the 
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procedure above on this particular example it was then proved that for r > 1, 

is holomorphic in the complex r-plane cut from $(r + r-')  to CO and the Legendre series 
converges to f(z) in E,. 

When O S  r s 1, f (z)  defined by the left-hand equality in (2.8) is holomorphic in the 
complex z-plane cut from 1 to CO. However, in general the Legendre series obtained 
by substituting the power series expansion for g(w  ) and then interchanging the order 
of summation and integration will not converge for any z in the cut plane. This is an 
example where f ( z )  is only 'formally' equal to Z&f,P,(z). 

3. Legendre Pade approximants 

In Common (1969), 'Legendre Pad6 approximants' were defined to the series of 
Stieltjes (2.7)' and it was shown that sequences of such approximants converged to 
g ( w )  in its domain of holomorphy. However, the definition does not really depend on 
the fact that g ( w )  is a 'series of Stieltjes' and we can apply the method to any power 
series g(w  ) and corresponding Legendre series f(z). 

Let us recall the definition of Pad6 approximants to g ( w ) .  

Definition. The [ m / n ]  Pad6 approximant to g ( w )  is a rational function gmIn(w) with 
numerator of degree m and denominator of degree n such that 

with the normalisation bo = 1. 

sequences 
We will find it useful to consider the partial fraction expansion of 'diagonal' 

where j is a fixed integer. If j is negative then here and in the following discussion the 
second sum on the right-hand side of (3.2) is absent. 

The defining relation (3.1) then requires 

i f f&=fr  
p = l  

r = j +  1, j + 2 ,  . . . , 2 n  + j 
(3.3) 

where the f, are the coefficients in the power series expansion (1.2) of g ( w ) .  

use ( 2 . 3 )  in the following way. 
In our definition of 'Legendre Pad6 approximants' to the Legendre series (2.2) we 
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Definition. The [ n  + j / n ]  'Legendre Pad6 approximant' to 

i r  

is 

where gn+iln(w) is the corresponding [ n  + j / n ]  Pad6 approximant to g ( w )  and r is 
taken sufficiently close to the cut of K ( z ,  w), so that it does not enclose any of the 
poles of the Pad6 approximant except those lying on the cut of K ( z ,  w). The cut of 
K ( z ,  w) may be adjusted so that in fact no poles of g,,+,/,, lie on it. An explicit 
representation for the 'Legendre Pad6 approximant' may be derived by by using the 
partial fraction expansion (3.2) for g,+il,(w). 

Theorem 3.1. For n = 0 , 1 , .  . . , j=0 ,*1 ,*2 , .  . . , 

where the branch of the square root is that which is real positive when the argument is 
real positive. 

Proof. Consider the integral around the contour illustrated in figure 3 made up of four 
parts, r, r2, rl and r3. Since by construction there are no poles of gn+i/n(w) in the 
region enclosed by r, the large contour may be made to enclose all the poles of 
gn+j/j(W) by taking rl sufficiently large. In that case by the residue theorem 

Figure 3. The contour for evaluating f:+,/"(z) and a specimen pole of g ( w ) .  
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On the left-hand side the integrals over r3, r2 cancel and by expanding rl to infinity 
the integral over this contour also vanishes. Hence 

1 
= - f %(z, --) + 2 P 4 p 4 ( Z ) ’  

p = l  u p  cr, q = o  

The representation (3.6) of our approximants shows that they are closely related to 
‘generalised Pad6 approximants’ whose properties have been described by Baker 
(1975, chapter 19). In fact when g ( w )  is a ‘series of Stieltjes’, our approximants are 
identical to the above approximants as may be seen from the expressions (3.11) for the 
exact function f(z) and (3.6) for f k + i / n ( ~ ) .  

An interesting property of our approximants which was not discussed previously is 
an anology of the defining property (3.1) of the Pad6 approximant g,+i/,(z). 

Theorem 3 .2 .  

f k + j / n  (2 1 = f ( z )  + O ( P Z n + j + l ( Z  1). (3.8) 
2 - 1 / 2  Proof. Using the standard expansion for (1 - 2upz +up)  in (3.6), and the relations 

(3.31, 

Alternative methods of defining ‘Legendre Pad6 approximants’ give approximants 
which have the property (3.8) in analogy to the Pad6 approximants. However, our 
method has the advantage that if the Pad6 approximants converge uniformly to g ( w  ) 
in a domain with the required properties then our approximant f k c j l n  ( z )  will converge 
uniformly to f(z) in a corresponding domain in the complex z-plane. 

Theorem 3.3. Suppose that C is a simply connected domain in the complex w-plane 
such that if w E C fl F (where F is the domain lw 1 > 1) then w-l E C and these two 
points can be joined by a contour lying completely within C. 

If the Pad6 approximants g n + j / , , ( w ) + g ( w )  uniformly in C as n+co for fixed 
j = 0, *l, * 2 , .  . . , then f~+i /n(z)+f(z)  uniformly in the domain E, {zlz = 
$(w + w-’),  w E C f l F }  where f ( z )  is the function whose Legendre series expansion 
(2.2) has the same coefficients as the power series expansion (2.1) of &). 
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Proof. By definition 

f ’ . t j / n ( z ) = $ j  ~ K ( . z ,  W)gn+j/n(w)dw 

and for all z E E we may choose r to lie completely inside C. Then since gn+jln(w) 
converges uniformly to g(w) for w E C, 

j = 0, * l ,  1 2 , .  . . 1 =-I K ( z ,  w) n-m lim gn+jln(w)dw 
21ri r 

1 =-I K ( z ,  w)g(w)dw = f ( z ) .  
21ri r 

(3.10) 

The convergence is uniform for z E E. 
The special case when g(w) is a ‘series of Stieltjes’, 

‘Ir d4(u )  
g (w)=L l+uw 

was considered previously (Common 1969). It was shown that the sequences f$n+j  of 
approximants to 

l’r  dr#J(u) 
Jo (1-2U.Z + K 2 ) ’ 1 2  

f(z)=- K ( z ,  w)g(w)dw = 21ri ‘I r (3.11) 

converge uniformly for fixed j 3 -1 as n + 03 in any finite closed region of the complex 
plane cut from i ( r  + r - l )  to o;, when r > 1 and cut from 1 to CO when 0 s r S 1 so long as 

diverges. This result is equivalent to theorem (3.3) for this particular 
type of series. It often happens that one wishes to deal with a Legendre series. 

l / ( Z n + l )  c:=o vn1- 

The corresponding power series is 
CO 

h ( z ) =  (21+ l)f,(-ZY = ( g ( z ) + 2 2 9 ) .  
i = o  dz 

Again we may derive the relation 

(3.13) 

(3.14) 

and show that f ( z )  indeed has the Legendre series expansion (3.12) which again may 
be only ‘formal’. The ‘Legendre Pad6 approximants’ in this case are defined to be 

On using the partial fraction expansion (3.2) for gn+j,n(z), we findt 

(3.15) 

t Let us remind the reader that if i is negative the second sum on the right-hand side of (3.15) is absent. 
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where again we take the branch of the square root which is positive when the 
argument is positive real. 

It is straightforward to prove that these approximants again satisfy (3.8) and have 
the convergence properties given by theorem 3.3. 

4. Comparison with other types of ‘Legendre Pade approximants’ 

The defining equation for Pad6 approximants was given in 8 3 and may be written 

where pm is the numerator and qn the denomintor of gmIn(w) .  This relation is 
equivalent to the requirement that 

g ( w  )q” (w ) - pm ( w  ) = O( w (4.2) 

In the corresponding case of Legendre series f(z) = E;“=, f iPI(z), Holdeman (1969) 
has defined the [ m / n ]  ‘Legendre Pad6 approximant’ to f(z) to be given by the 
requirement analogous to (4.2), that 

f(z ) q n  (2 ) - P m  (2 = O ( p n + m + l ( z  )) (4.3) 

where q n ( z )  = E:=o b,P,(z) and pm(z) = 
and numerator of the approximant. 

determined by the requirement analogous to (4. l) ,  i.e. 

asPs(z) are respectively the denominator 

Alternatively Fleischer (1973) has suggested that the q n ( z )  and p,(t) can be 

(4.4) 

Unlike the case of ordinary Pad6 approximants, the ‘Legendre Pad6 approximants’ 
defined from (4.3) are different from those defined by (4.4). The former have been 
called ‘linear’ by Fleischer since (4.3) leads to a set of linear equations for the 
coefficients { u s ;  s =0,  . . . , m} and {br ;  r = O ,  1 , .  , . , n} ,  while the latter have been 
called ‘non-linear’ since they lead to a set of non-linear equations for these 
coefficients. It is not guaranteed that the latter set of equations has a solution, but for 
the examples treated by Fleischer this indeed was the case and the ‘non-linear 
approximants’ gave better numerical results than the ‘linear approximants’. 

An example considered by the above author was the function 

(4.5) 

This function is holomorphic in the complex z-plane cut from l / a  to CO and the 
particular value l / a  = 1.816 was used. Using the fi up to and including 1 = 6, the 
[2/2] ‘linear’ approximant and the [3/3] ‘non-linear’ can be evaluated. In table 1 the 
values of these approximants (as taken from Fleischer 1973) are given in the third and 
fourth column for various real values of 2. From these same coefficients we may 
evaluate our approximant fk,,(z), the results being given in the fifth column while for 
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Table 1. Approximants to In [(1-az)/(l -a)]. 

Z Partial Linear Non-linear f k p ( . z )  f(z) 
sum approximant approximant 

-3.5 
-1.75 
-1.0 
-0.5 

0.0 
0.5 
1.0 
1 .5  
1.75 

1.42 
1.237 97 
1.042 62 
0.799 537 
0.477 65 
0.000 20 

-0.854 
-1.57 

1.865 
1.473 5 
1.238 06 
1.042 655 
0.799 521 
0.417 65 
0.000 18 

-0.907 
-1.90 

1.872 7 
1.474 13 
1.238 078 3 
1.042 653 57 
0.799 527 67 
0.477 627 52 
0.000 001 3 

-0.942 
-2.24 

1.873 1 
1.474 15 
1.238 078 36 
1.042 653 61 
0.799 527 62 
0.477 627 54 
0.000 000 6 

-0.945 
-2.33 

1.873 4 
1.474 156 
1.238 078 42 
1.042 653 64 
0.799 527 58 
0.477 627 55  
0.0 

-0.947 
-2.51 

comparison in the last column of table 1 we give the exact values of f ( z )  and in the 
second column give the partial sum of the series. 

It will be seen that the partial sum is a quite reasonable approximation well inside 
the convergence domain of the series, but is no use near the cut of f ( z )  or outside this 
domain. The three types of ‘Legendre Pad6 approximants’ give better results, and the 
best approximation is given by our approximant f k/s  (2). 

Another interesting application of the ‘linear Legendre approximants’ has been 
made by Corbella er a1 (1976) who have used them to sum the partial wave expansion 
of the scattering amplitude for a repulsive inverse square potential. Potentials of this 
type are involved in elastic e-H scattering, near the inelastic threshold (Geltman 
1969) and sometimes hundreds of terms are needed to get good estimates for the 
scattering amplitude. 

The partial wave expansion for the potential V = Ar-’ with A > 0 may be obtained 
explicitly (Cobella et a1 1976) and is 

1 “   COS e) = 1 ~ ~ P ~ ( C O S  e) 
I=O 

where 

fi = (21 + 1) ei’l sin sI 
and 

1 /2 Tr 
61 =-[I 2 +t - ( ( 1  +y+$) 3. (4.7) 

Also hk is the momentum of the scattered particles which are taken to be of unit mass. 
Corbella et a1 (1976) evaluated the ‘diagonal’ linear approximants 

defined by the requirement (4.3), for various values of z = cos 8 and m, taking A = h2 
and k = 10. It should be noted that the first (3m + 1) coefficients of the partial wave 
series are needed to construct this approximant, whilst we only need (2m+1) 
coefficients to construct our corresponding approximant fk/, (2). The above authors 
found for the values of z considered that to obtain a 10% relative accuracy for lf(6)1’ 
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only about 20 terms of the partial wave series were needed when the approximants 
{m/m} were used as compared with about 2000 terms of the series if summed directly. 

In table 2 we compare the above results, with those obtained from f k l m ( z )  using 
the same number of coefficients. In the last row are given the 'exact' values of f(cos e), 
which were in fact obtained by summing directly the partial waves series and taking 
more and more terms until stability was obtained. It will be seen that our approxi- 
mants given appreciably better results than the 'linear' approximants, and in many 
cases only half the number of coefficients is needed to given comparable accuracy. 

The classical cross section for scattering by the inverse square potential is linear in 
the strength of the potential, while from the Born approximation to the quantum 
mechanical amplitude one might expect it to be quadratic. Kayser (1974) has dis- 
cussed this apparent contradiction by showing that for the conditions under which 
quantum scattering becomes classical, the Born approximation is not valid. His result 
is essentially that the classical limit is approached as A becomes large, whilst the power 
series in A for the scattering amplitude converges and hence the Born approximation 
can be used only when \FA I < h2/4 where p is the mass of the particle being scattered. 
It is interesting to see how quickly the classical limit is reached as A is increased above 
these values. 

We have therefore used our approximants to calculate fk Im (cos 0 )  and hence 

and compared with the classical cross section+ 

(4.9) 

(4.10) 

for various values of A and for 8 = 18", 180". 
The results are given in table 3 and it will be seen that as A is increased higher- 

order approximants are needed to get equivalent accuracy. Assuming that the highest 
approximant in each column gives a close approximant to the quantum mechanical 

Table 3. du,,,(cos e)/dfl corresponding to potential V ( r )  = Ar-2  for a selection of 
coupling strengths and scattering angles 9. 

e 0.2 1 3 10 30 100 

18" 4 0.236 1.89 
5 0.236 1.89 

10 
15 
du,lldhl 2.57 7.70 

180" 4 0.004 0.024 
5 0.004 0.024 

10 
15 
du,l/dfl 0.010 0.030 

15.28 74.3 
15.27 74.0 269 40 

264 769.6 823 
264 7694 2540 

25.7 77.0 257 770.4 2568 

0.100 0.301 
0.100 0.301 1.010 3.4 

1.010 3.04 
1.010 3.04 

0.101 0.304 1.013 3.04 
~~ 

t In units where h = CL = 1. 
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cross section for the given value of A ,  we see that this is close to the classical amplitude 
for A 3 3 near the forward direction and for A 3 1 in the backward direction. So the 
classical limit is obtained for quite moderate values of A. 

5. The singularities of the Legendre Pade approximants 

It is a well known property that the singularities (poles) of the Pad6 approximants to a 
function g(w) in practice try to give a representation of the singularities of g(w) by 
lying close to these singularities. So the Pad6 approximants tend to have no poles well 
inside domains of analyticity of g(w), except for spurious pole-zero pairs. 

From the discussion in §§ 2, 3 especially, the representation 

for the Legendre series f ( z )  corresponding to the power series, and from the defining 
relation for our approximants, i.e. 

we would then expect the singularities of our approximants, which are branch cuts, to 
approximate the singularities of the exact function f ( z ) .  

In practice, this does turn out to be a generally held property of our approximants. 
For example, in Common and Stacey (1978), we will consider the Coulomb scattering 
amplitude (Landau and Lifshitz 1958), 

where hk is the momentum of the scattered particles and z is the cosine of the 
scattering angle. This amplitude has the partial wave expansion 

where 

(5.3) 

To be precise the series on the right-hand side of (5.2) does not converge point-wise 
but does converge in the sense of a distribution (Taylor 1974). 

The amplitude fc(z) is holomorphic in the complex z-plane cut from 1 to 00. In 
table 4, we give the branch point singularities z,  = t(a, +ai1) of the [6/6] 'Legendre 
Pad6 approximant' to f&). Corresponding to each point there is a branch cut along 
the line which is the set of points, 

{z(A); Z(A)=+(U, +A/u,), A 3 I}. 

It will be seen that the singularities do represent the cut of f c ( z )  along the positive real 
axis. Also in table 4 are given the strengths a, of the branch cuts of the approximant, 
and it will be seen that the last branch point which is furthest away from the real axis 
gives a weak singularity. 



272 A K Common and T Stacey 

Table 4. Branch points and strengths of the cuts of the [6/6] Legendre Pad6 approximant 
to the Coulomb scattering amplitude. 

~~ 

i(% + a,' ) aP 

0.999 86 -0.000 02i -3.0+0.4i 
1.000 05 -0.000 OOOi +2.8-0.51 
1.01 -0.000 5i 0(10--') 
1.14 -0.002i o(10-2) 
1.69-0.0081 o(10-2) 
4.7 -0.4i 0 ( 1 0 - ~ )  

Another amplitude treated by Corbella et a1 (1976) is that corresponding to the 
delta-shell potential 

g 
a 

V = - 4 ( r  - a ) .  

In that case the scattering amplitude f(z) and the corresponding power series g ( w )  are 
entire functions, i.e. have no singularities excapt at 00. For such functions the poles of 
the Pad6 approximants migrate to infinity as the order of the approximant increases, 
and in a similar way we find that the branch points of our Legendre Pad6 approxi- 
mants to f (z )  also migrate to infinity. 

Finally, when g ( w )  is a 'series of Stieltjes' the poles of its Pad6 approximants all lie 
precisely on the cut of g ( w ) .  We will show that our approximants to the correspond- 
ing Legendre series f(z) have a similar property. Let 

'"d4(u) 

where 4 ( u )  has the usual properties. As the poles of gn+i ,n(w)  lie on [0, l / r ]  it followfs. 
from (3.2) that 

0 s vp s l / r  p = l , 2  , . . . ,  n. (5.4) 

The cuts of the corresponding approximant ff;+i,n(z) run along the real axis from 
z,  =t(vp +(T;') to 00. It is straightforward to prove using (5.4) that these cuts are 
contained in the cut of f(z) which runs from t ( r  + r - ' )  to infinity when r 3 1 and from 
one to infinity when 0 G r 6 1.  

6. Conclusions 
We believe that our 'Legendre Pad6 approximants' defined in 0 3 form a simple and 
natural generation of ordinary Pad6 approximants. In the previous sections we have 
shown that the two types of approximant have many properties in common, and have 
in particular corresponding domains of convergence. 

In the numerical examples presented here, our approximants usually gave better 
results than the other types of 'Legendre Pad6 approximants' discussed in Fleischer 
(1973). The latter type have the big drawback that no convergence theorems have 
been proved for them. 



L-egendre Pad6 approximants and their application 273 

In a following paper (Common and Stacey 1978) we will continue the study of 
convergence theorems for our approximants. We will prove that for a variety of 
potentials including the very important Coulomb potential, our approximants to the 
scattering amplitude converge in the domain of holomorphy of this amplitude. 
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